
A HIGHLY OPTIMIZED VECTORIZED CODE FOR MONTE CARLO
SIMULATIONS OF SU(3) LATTICE GAUGE THEORIES

D. BARKAI
CONTROL DATA CORPORATION

INSTITUTE FOR COMPUTATIONAL STUDIES AT CSU
FORT COLLINS, COLORADO

K. J. M. MORIARTY
DEPARTMENT OF MATHEMATICS, STATISTICS

AND COMPUTING SCIENCE
DALHOUSIE UNIVERSITY

HALIFAX, NOVA SCOTIA, CANADA
AND

DEPARTMENT OF MATHEMATICS
ROYAL HOLLOWAY COLLEGE

ENGLEFIELD GREEN, SURREY, U.K.

AND

C. REBBI
DEPARTMENT OF PHYSICS

BROOKHAVEN NATIONAL LABORATORY
UPTON, NEW YORK

A Highly Optimized Vectorized Code for Monte

Carlo Simulations of SU(3) Lattice Gauge Theories*

D. Barkai
Control Data Corporation

at the
Institute for Computational Studies at CSU

P.O. Box 1852
Fort Collins, Colorado 80522

K.J.M. Moriarty
Department of Mathematics, Statistics

and Computing Science
Dalhousie University

Halifax, Nova Scotia B3H 4H8, Canada
and

Department of Mathematics
Royal Holloway College

Englefield Green, Surrey TW20 OEX, U.K.

and
C. Rebbi

Department of Physics
Brookhaven National Laboratory

Upton, New York 11973

Abstract

New methods are introduced for improving the performance of the

vectorized Monte Carlo SU(3) lattice gauge theory algorithm using the

CDC CYBER 205. Structure, algorithm and programming considerations are discussed.

The performance achieved for a 164 lattice on a 2-pipe system may be phrased

in terms of the link update time or overall MFLOPS rates. For 32-bit arithmetic

it is 36.3 usec/link for 8 hits per iteration (40.9 zsec for 10 hits) or

101.5 MFLOPS.

September 1983

Part of the submitted manuscript has been authored under contract
DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the
U.S. Government retains a nonexclusive royalty-free licence to publish or
reproduce the published form of this contribution, or allow others to do so,
for U.S. Government purposes.

*Talk presented at the International Conference "Parallel Computing 83" at
the Free University of Berlin, 26-28 September 1983 and at the Joint
NASA/Goddard-CDC Symposium on CYBER 205 Applications, held at Lanham,
Maryland, 11-12 October 1983.

119

1. Introduction

Many important results for quantum field theories in general and, in

particular, for the gauge theory of strong interactions known as Quantum

Chromodynamics (QCD) have been obtained by formulating the dynamics on a

space-time lattice. The lattice version of a quantized gauge field theory,

as proposed by Wilson Cl], has the properties of introducing an ultraviolet

cut-off independently of any perturbative expansion and of preserving

manifest gauge invariance. It permits a variety of investigations by

non-perturbative techniques, strong-coupling expansions [2] and Monte

Carlo (MC) simulations [3] being the most notable ones. Monte Carlo

simulations, indeed, have probably produced the most important results

for QCD, being able to probe the structure of the theory in the domain

where the transition between the strong-coupling behavior at large distances

and the asymptotically-free behavior at small separation takes place

Numerical methods must be used to explore the vary crucial domain

of intermediate couplings, since there are no known analytical techniques

for solving or even efficiently approximating gauge theories throughout

that region. On the other hand the fact that quantum fluctuations on

a finite lattice extending for n sites in four dimensions are given

by integrals of a dimensio

parameters in group space)

importance sampling, i.e.

possibility.

nality 4n4ng (rig is the number of independent

, which can easily exceed 2,000,000, leaves

Monte Carlo simulations, as the only calculational

Monte Carlo calculations are of a numerical nature, and quite

demanding on computational resources. The simulation of a system with

SU(3) gauge group (i.e. the system underlying QCD) on a lattice extending

for n sites in each of the four space-time dimensions requires storage

of 4n4 link variables, i.e. 4n4 SU(3) matrices, and the systematic

120

replacement, or "upgrading", of each of these matrices with new, updated

values, for several hundred or several thousand sweeps of the whole

lattice. One MC iteration is defined as a sweep of the lattice, i.e.,

one upgrade per link variable. A computation involving M MC iterations

thus implies 4Mn4 individual upgrades of SU(3) matrices. The upgrading

of each SU(3) matrix requires approximately 4,150 elementary arithmetic

operations and 180 table look-ups (if 10 attempts at changing the link

variable are made for each upgrade). For a lattice large enough for

obtaining physically meaningful results, the amount of computation needed

for a Monte Carlo simulation of QCD becomes extremely high.

Because of the aforementioned difficulties, Monte Carlo simulations

of QCD have been generally limited to lattices of rather small extent,

a lattice of 84 sites already representing a large lattice with respect

to the scale of most calculations. On the other hand, with the progress

in the field, it has become apparent that one must definitely analyze

larger systems to develop confidence in the numerical results. This need

may be understood on physical grounds. If 2 GeV is considered as a

universal energy for the effects of asymptotic freedom to begin manifesting

themselves, one would like the lattice spacing to be smaller than (2GeV)-'

(and the corresponding ultraviolet cut-off larger than 2GeV) i.e. smaller

than O.lfm. Conversely, if the goal of the computations is to determine

hadronic structure, the extent of the lattice should be larger than the

typical size of a hadron. Taking this size to be (minimally) 1 fm,

it becomes apparent that the parameter n ought to be larger, if possible

substantially larger, than 10. With, e.g., n = 16 and M : 1000 the

calculation of a MC simulation requires more than 10 12 operations not a

small task even for the largest machines currently available.

121

lllllllllllI! I! I II I Ill II I I Ill I I l1mllllllllllllllllllllllllllll

The number of the data elements involved, and the amount of

computations needed for manipulating this data, makes it worth while

to investigate ways for vectoritation of the code.

The purpose of this article is to illustrate the vectorization and

implementation on the CDC CYBER 205 of a code for Monte Carlo simulations

of the.SU(3) lattice gauge theory. (For previous implementations of

vectorized code see Ref.4.) As will be discussed in more detail in

the final section of this paper, the characteristics and performance are

such that 1 MC iteration of a 164 lattice can be done in 10.72 seconds

(corresponding to an upgrade time of 40.9 usec per SU(3) link variable).

Thus, 164 and larger lattices can be considered for meaningful

simulations of QCD. While we describe in this article the program for

the basic Monte Carlo algorithm, we are currently using it, together

with other vectorized codes, for a reevaluation on a large lattice, of

several quantities of theoretical and phenomenological interest in QCD.

The results of these investigations will be presented separately [S].

Here we proceed with a description of the computational algorithm and

an outline of its vectorization in Sect. 2, with a more detailed

account of the program in Sect. 3 and a summary of performance data in

Sect. 4.

2. The Monte Carlo Algorithm

We consider a hypercubical lattice of ns sites in each of the

three spatial directions and nt sites in the temporal one. The

dynamical variables of the SU(3) gauge theory are 3x3 unitary-

unimodular complex matrices, which are associated with the 4nlnt links

of the lattice. We denote by Vi the matrix associated with the

122

oriented link coming out of the lattice site of (integer) coordinates

X E (Xl sX~,X~SX~) in the direction u (u=l,2,3,4). The goal of the

Monte Carlo algorithm is to produce a stochastic sequence of configurations

of the system C(i), (a configuration being defined as the collection

of all Ug), such that the probability P(C) of encountering any

configuration C in the sequence approaches, after a reasonable

equilibriation time, the distribution

P(C) J exp{-S(C)3 , (2.1)

where S is the action of the configuration C in that sequence. S

is given by a sum over plaquette variables p , a plaquette being an

oriented square of the lattice defined by the origin x and two directions

lJ and v :

5 = x.5
Pp

= 6 z(1
P

- f Re Tr Up) ,

where

(2.2)

(2.3)

3 is the coupling parameter and z ,G stand for unit lattice

vectors in the L and ‘J directions, respectively. When Eqn. 2.1 is satisfied,

quantum mechanical expectation values of observables e, defined rigorously

as averages over all possible configurations, namely

123

<6; = z -1
I

TI dU;) u(U)exp[-S(U)]
X,!J

(2.4)

with

Z = '(II Ui)exp[-S(U)] ,
1

(2.5)
X,lJ

can be approximated by averages taken over the configurations generated

by the Monte Carlo algorithm:

6'(C(')) . (2.6)

NO represents the number of initial configurations discarded in order

to allow for the stochastic sequence to reach equilibrium.

In our code we implement the MC algorithm following the method of

Metropol

replaced

s et al [6]. Each individual dynamical variable Ui is

by a new one uz" x according to the following procedure:

candidate matrix Ui' is obtained from Ui by group multiplication:

U,"' = RkU; ,

i) a net

where Rk is an W(3) matrix randomly selected from a prepared set

CR, , . . . , RF11 of M matrices, to be discussed later.

124

ii)' the change in action, AS induced by the variation IJF + Ui '

is calculated:

AS = s(u;’ ,.. .)-s(u; ,...); (2.7)

iii) a pseudorandom number r with uniform distribution between 0

and 1 is generated and

;uQjJ . if
X

x r < exp(-AS) ,

$J = uu otherwise.
X X

The steps i) to iii) define what is ca ,lled a "hit" on one of the

variables. These steps are repeated Nh (number of hits) times.

link

This

completes the upgrading of one (link) variable UF . One MC iteration

(or one sweep of the lattice) is executed when all the variables have

been processed in this manner.

A crucial consideration for the whole algorithm and also for its

vectorization is that the calculation of the variation of the action

AS involves only a few of the dynamical variables apart from Ui

itself, namely those defined on the remaining links of the six

plaquettes which share the link between x and x+c . It is

convenient to be slightly detailed at this point and to introduce some

terminology. Given the link from x to x+G there are three

"forward" plaquettes incident on it, namely those with vertices

LI ,. A A
x, x+-i, X+!l+‘J and x+v ,

125

(v taking the three values # u) and three "backward" plaquettes,

namely those with vertices

h
x, x+lJ, x+1;-; and x-G ,

(see Fig. 1).

We shall define as the "force" acting on Ui the sum of the expressions

Fuv = Uu+A Uu A Uv
f,x x+!J x+LJ x

(corresponding to the forward plaquettes) and

pJ vt

b ,x = u;+;-;";-;ux-;

(corresponding to the backward plaquettes) over the three values of

VflJ

(2.8)

(2.9)

(2.10)

One can easily convince oneself that of the terms contributing to the

action in Eqn. 2.2 all those containing UF can be written in the form

BL.1 - f ReTr(Fg*Uz)] , (2.11)

and therefore

126

As = - 4 ReTr[Fit(Ui'- Ui)] . (2.12)

Thus, we become aware of two fundamental facts:

i) once the force FI is calculated, the Nh subsequent hits on

the link variable Uy can be done without any further recourse to the

values of other U variables.

ii) several upgradings can be done in parallel, provided only that the

forces Fi required for the computation do not involve any of the IJZ

variables that are simultaneously upgraded.

While point i) is relevant for any MC simulation, point ii) acquires

particular importance if one wants to write a vectorized code. Indeed,

as we shall show, all Us: variables with fixed u can be separated into

two sets such that the forces for one set only involve elements of the other.

Then, all the Ut variables belonging to one set can be grouped together

in an array and upgraded simultaneously. Finally one proceeds to upgrade

the elements of the other set (the red-black or checkerboard algorithm

[4]). We will see in the next section that the ability to separate

the link variables into two independent sets is a key to efficient vector-

ization.

3. The Vectorized Implementation of the Algorithm

The previous discussion has demonstrated that Monte Carlo lattice

gauge theories are worthy candidates for vector processing. Until recently,

however, people were doubtful as to whether the vector capabilities of current

127

supercomputers can be effectively utilized for such applications. The

main source for this skepticism is the inherent conflict between random

access to data, an integral part of a Monte Carlo process, and the strict

order of data elements required for pipelined computations. In other words,

unless data can be "gathered" at rates comparable to computation rates no

efficient vectorization can be achieved.

One of the major strengths of the CDC CYBER 205, and what makes it

a particularly powerful Monte Carlo machine, is the ability to order a

random collection of data by means of a vector instruction, namely, the

"Gather" instruction. This instruction is equivalent to a series of

random, or, indirect "load" operations on a serial computer. The

Gather instruction uses a vector of integers as an "index-list"

pointing to the elements to be fetched. These elements are stored

in the order they have been encountered into an output vector. The

result rate for the Gather operation is one element every 1.25

cycles (a cycle, or clock-period on the CDC CYBER 205 is 20 nanoseconds).

For a comparison, note that the floating-point arithmetic rate, excluding

division, is one element every cycle per pipe for 64-bit operands. The

CYBER 205 hardware also supports 32-bit operations with twice the

result rate for vector floating-point operations. For example, on a

two pipe machine 32-bit arithmetic is performed at a rate of 5 nsec

per result, or 200 MFLOPS.

The effective utilization of the computational tools build into

the vector processor is closely related to the data structure, as are

most of the important algorithmic decisions. It is, therefore,

appropriate, at this point, to discuss the memory requirements. A

3x3 complex matrix is represented by 18 real numbers. The constraints

128

of being unitary and unimodular reduce the number of independent para-

meters to 8, but such a minimal representation of the Ut variables

implies a substantial increase in the computational complexity. To obtain

optimal performance it is useful to keep all the 18 values representing

the real and imaginary parts of the elements of IJ: . For a lattice

with ns = nt = 16 a configuration will be defined by 18 x 4 x 164 =

4.718592 million values, which may be more than can be put in the fast

memory of many computer systems. Fortunately, the sequential nature of

the MC algorithm suggests that only a fraction of the variables need

to be in memory at any one time. The others can be kept on disk.

The factors which determine an optimal size for the partition between

variables in memory and on disk are the following:

i) the partition should not make the code unnecessarily complicated;

ii) the I/O operations should not take longer than the actual computations;

iii)sufficiently long vectors should be available.

On the basis of the above requirements we decided to upgrade one

space at a time, i.e. to upgrade all the 4nz variables UI with fixed

time coordinate x4 , and then to proceed to the next x4 etc. We

shall refer to this procedure as time-slicing and to the collection of

variables with fixed time coordinate x4 as one time-slice of the system.

If the variables with a given x4 = t are being upgraded, the

calculation of the force requires knowledge of the Ui with x4 = t-l,

x4 = t and x4 = t+l . Thus 3 time slices need to be in memory

throughout this stage of the calculation. As a matter of fact, since

I/O operations can proceed independently from CPU operations, it

129

is possible to achieve concurrency of I/O and CPU operations if

extra memory buffer space is allocated for holding the x4 = t-2 slice

(to be written out), and the x4 = t+2 slice (to be read in). The

conventional way of implementing concurrent I/O is to allocate space

for two more slices. The resulting five slices in memory act as a

circular buffer as shown in Fig. 2. However, the virtual memory hardware

on the CDC CYBER 205, and the supporting software provide the capability

to swap data between disk and memory. Hence, the memory area of one

slice only is needed to write out the x4 = t-2 slice, and read in

the x4 = t+2 slice. Consequently, the total memory requirements for

the link variables are thus 4 x n: x 4 x 18 locations. Allowing for some

additional work-space we find that lattices with ns = 16 can be

considered in a machine with 2m words (16m bytes) in full precision

(64-bit words) and ns = 20 in half precision (32-bit words). The length

in time does not constitute a problem any longer and lattices with any nt

may be simulated.

With the slicing mechanism in place we now turn to vectorization

aspects of the code. In Sec. 2, the Red-Black ordering was introduced.

The motivation for this choice merits some discussion. The computation

involves, mainly, matrix multiplications. This operation is easily

vectorized, but the matrices concerned are 3x3 matrices, and the resulting

vectors are going to be 3 elements long. For efficiently vectorized code

one needs to seek longer vectors. This results from the observation

that the timing formula for a vector instruction may be written as

(Start-up + 3-N) cycles (3.1)

130

where the start-up time is a constant, independent of the vector length.

It amounts to aligning the input and output streams, filling up the

pipelines up to the point where the first result is available and storing

the last result. The start-up time is also independent of the number of

pipe1 ines and whether 64-bit or 32-bit arithmetic is performed. On the

CDC CYBER 205 it amounts to about 50 cycles, or 1 gsec. The “a.N” term

is known as the "stream time". N is the number of elements in the vector,

so that the stream time is proportional to the vector length. a is a

constant associated with the number of pipelines and the arithmetic mode.

Table 3.1 contains the a values for some relevant circumstances.

It is now obvious that high performance is achieved by minimizing the number

of "start-ups" as a consequence of using longer vectors, or, increasing

N for each vector operation.

The SU(3) matrices are too small as an object for vectorization;

however, there are nl such matrices in every time slice. One cannot

use all of these link values simultaneously because -

i) updating each link requires all its irrrnediate neighbors, and

ii) the correct convergence of the Metropolis process depends upon

using "new" values as soon as they are available.

The Red-Black (checker-board) ordering resolves this apparent recursive

relationship. The separation of the Ui variables into two sets, for

each value of u and at fixed x4 , is achieved by putting in the two

sets all the variables belonging to links originating from odd and even

sites, respectively, i.e. with x1 + x2 + x3 = 1 or 0 (mod 2). This

assures the independence of the forces FE from the variables Ut being

upgraded. On a lattice with ns = 16 the above separation gives a vector

length of ni/2 = 2048, sufficiently large to insure almost optimal

131

performance (in fact, 91% and 95% in 32-bit and 64-bit arithmetic,

respectively). The calculation of the force FI requires knowledge

of the Ui variables associated with links neighboring the one under

consideration. Because of boundary conditions , which we take to be periodic,

the variables which enter the calculation of FE will not, in general,

have a simple location-index relative to UI in the array of dimension

nz/2 . This is easily remedied by the introduction of auxiliary

integer-valued arrays, where the indices of the various neighbors of

Uu
X

are prestored. The Gather instruction plays a crucial role in the

way these index arrays are used. When Fi is evaluated, all the

needed variables are gathered into temporary arrays, so that the indices

of all elements entering into the computation of FF are the same, and

this proceeds in a fully vectorized manner.

Once,the Fy's are determined the algorithm for the upgrading

of all the U';: (in the same set) is straightforward and completely

vectorizable. The matrices R which are used for finding the new

candidates IJY' , are Gathered according to an array of indices extracted

at random from a table. The table contains M SU(3) matrices which have

a distribution centered around the identity of the group and are obtained

in the following fashion. For each value of i between 1 and M/2

(M must be even) an eight component vector Vk with approximately

gaussian distribution and <VE> = 1 is pseodoramdomly generated. The

fourth-order approximation to Ri is given by

R" -
2 4

i-
ltiA-$-$+&

(3.2)

132

where

A = b ii VkXk * (3.3)

'k are Gell-Mann's matrices (i.e., a set of generators of the Lie

algebra of SU(3)) and b is a real parameter specifying the spread

of the distribution. The final value for Ri is obtained by normalizing

R0 i to a unitary-unimodular matrix. In general, if we denote the

three columns of an SU(3) matrix by y1,F2 and "; the constraint

of being unitary and uni modular is expressed by

I2 = \";I2 = 1 IF1

2
rl . ;* = 0 2

and

ith the first two co Given a matrix R" w

-0-o
rlxr2 # 0 , we shall

R with columns

define as the nor-ma

and

= (+r2)* .

-0 lumns rl 4 and r2 , with

lized form of R" the matrix

r /I- JO2
1 = q/ ,rl I

(3.4)

(3.5)

133

The reason for the nonmenclature is due to the fact that, if R" differs

slightly from a unitary-unimodular matrix, e.g. as a consequence of

roundoff errors, then R is an SU(3) matrix close in value to R0

imodular matrix R0
i obtained by Thus, the approximately unitary-un

truncated exponentiation in Eqn. 3

matrix Ri by normalization. The

.2 is converted to a proper SU(3)

last M/2 matrices are obtained by

(3.6)

so as to insure that, together with any given matrix Ri , the inverse

should also belong to the table.

The procedure for normalizing the SU(3) matrices of the random

table, as described above, is also applied, every few iterations, to the

link matrices. This is done to insure that the group symmetry of the

matrices is preserved regardless of rounding errors which may be

introduced by the hardware after many arithmetic operations. This

renormalization process is particularly important when the computations

are performed using low precision arithmetic. It gives us confidence, which

was also tested and verified, in using 32-bit arithmetic for our calcul-

ations on the CDC CYBER 205.

Once UF' is determined, using the table of random SU(3)

matrices, the action difference is obtained by calculating, separately,

ReTr(FzLUz) and ReTr(Fi;UE')

(notice that ReTr(A'B) is the vector product of the arrays containing

134

the real and imaginary parts of A and B) , forming an array with

exp[-AS) , comparing with an array of pseudorandom numbers and

accepting or rejecting the change, via a masking operation, according

to the outcome of the vectorized comparison between the random numbers

and the exponentiated action differences. These steps are repeated

for a prefixed number of hits before commencing the upgrade of the other

set or the variables corresponding to different directions.

The conditional acceptance of elements in a vector, or, the masking

operation referred to above, is handled through the usage of a "bit-vector"

(the CDC CYBER 205 is bit addressable and the software allotis the Fortran

user to use this feature). It is exploited as a part of the vector

instruction, and inhibits storing results where zeros are encountered-

in the bit-vector.

The reader should by now realize that many thousands of random

numbers are required for each iteration. The conventional congruent

method for generating random numbers is recursive, and may be described

by

yi+l = (asyi)mod(b) (3.7)

where a is the "multiplier" and b is determined so as yi+l will

be approximately the lower half of the coefficient of the product a.yi

The nature of this calculation suggests that in order to produce N

random numbers one has to repeat it serially N times. There is,

however, a way to reproduce the same sequence of N numbers in

parallel, using vector instructions [7]. Define a new multiplier by

135

I Ill IllI II Ill II lll-~IllIIlllllllllIIlllllllll

A = (aN)mod(b)

= (...(a*a)mod(b)*a)mod(b)...*a)mod(b)

and let

11 = (yl+‘“*‘YN)

be the vector containing the first N random numbers.

Then

lit1 = (A*li)mod(b)

(3.8)

(3.9)

(3.10)

reproduces the same sequence of random numbers one gets with a

repeated application of Eqn. 3.7 (the computation of Eqn. 3.10 requires

only 3 vector operations on the CDC CYBER 205).

To conclude this section, let us discuss the way matrix multiplication

is done, being the most time-consuming aspect of the computation . First,

the reader will remember that we do not vectorize the matrix multiplication

as such, but, rather, perform the operations on many matrices in parallel,

where for each matrix the "scalar" sequence of operations is followed.

When computing the products of two SU(3) matrices, one need not

evaluate all the columns of the result, since the third column of the

product matrix (which is again unitary-unimodular) is related to the

first two by Eqn. 3.4. In the code we have exploited this fact whenever

possible. It is particularly advantageous when several SU(3) matrices

must be multiplied together, since one may limit the calculations to

two columns out of three in all intermediate products and simply

reconstruct the third column of the final result as shown in Eqn. 3.4.

136

Finally, all complex arithmetic has been done in terms of real

variables, separating real and imaginary parts (which would also

result in a more efficient code for a scalar machine), and we have

used the identity

(A+iB)(C+i D) = (A+B)(C-0)-BC + AD + i(BC+AD) (3.11)

to perform the product of two complex matrices in terms of three real

multiplications and five real matrix additions. Using complex

arithmetic the product of two matrices would require four real

multiplications and two additions. Due to the fact that matrix

multiplication requires 2N 3 operations, where N is the dimension

of the matrix, and matrix addition requires only N' operations, our

method pays off even for N = 3 .

A schematic outline of the flow of the calculations is shown

in Fig. 3.

4. Performance and Timings

The figures quoted here are based on runs executed on a two-pipe,

2m 64-bit words CDC CYBER 205. They apply to a 164 lattice (ns = 16, nt = 16),

SU(3) gauge theory with 10 hits per link upgrade (unless stated explicitly

otherwise). We present performance figures for both 64-bit and 32-bit

arithmetic operations. In both modes the exponentiation and the generation

of random numbers were carried out using 64-bit arithmetic. It should be

noted here that due to our slicing .mechanism the 32-bit version requires

real memory of only 852,000 words (64-bit words, or 6.8m bytes), so it

actually fits comfortably on a lm words system. With these parameters

137

the code performs at 98% CPU utilization. The 64-bit version requires,

of course, twice as much memory.

In Table 4.1 we give the percentage of the execution time for the

two arithmetic modes spent in the force (FE) and the Metropolis

updating calculations. It becomes clear from these figures why it is

worth while using a single force computation for a number of attempts at

updating (rather than the one attempt proposed by the original Metropolis

method).

It should be added here the normalization procedure discussed in

Sec. 3, performed every 5 iterations adds only 0.74% and 0.59% in

64-bit and 32-bit modes, respectively, to the total execution time.

Table 4.2 presents a percentage breakdown of the code by operation

We. The reader will notice that the Gather, random number generation

and the exponentiation operations are more heavily weighted in the 32-bit

mode compared with that of the 64-bit mode. These three types of

operations perform at the same rate in both modes. The last two

execute in 64-bit mode in both versions of the code. The Gather instruction

performs at the same rate regardless of whether the operands are 64-bit

or 32-bit variables. This is because the performance of the Gather

operation is driven by memory access (and not by computation complexity).

The matrix multiplication, being made up of floating-point operations

only, executes at near peak rate of 95 MFLOPS and 182 MFLOPS for the

64-bit and 32-bit modes,respectively. The effect of vectorizing the

random number generator can be illustrated by noting that this operation

amounted to 6% (64-bit) and 11:; (32-bit) of the total time when it was

not vectorized. The "action" involves taking the real part of the

trace of products of SU(3) matrices (purely floating-point operations).

The "acceptance" is the portion of the code where the conditional acceptance

138

of new UE matrices occurs under the control of a bit-vector

created for that purpose.

The actual time for one iteration of the 164 lattice

with 10 hits is 16.27 sets. (64-bit) and 10.72 sets. (32-bit). This

amounts to a substained performance rate of 66.8 MFLOPS (64-bit) and

101.5 MFLOPS (32-bit). Another way, commonly used by physicists, to

express the performance of Monte Carlo lattice gauge theories implemented

on a computer system, is the link update time, i.e., the time needed

to update one link of the lattice once. This measure is useful for

comparisons since it is independent of the lattice size. The link

update times (in usecs.) for our implementation are given in Table 4.3.

These figures may be compared to a link update time of about 1,100

usecs on the CDC 7600 computer system with a highly optimized code.

Acknowledgements

We would like to thank Control Data Corporation for awarding time

on the CDC CYBER 205 at the Institute for Computational Studies at

Colorado State University where the code described in the text was

developed. One of the authors (K.J.M.M.) would like to thank Dalhousie

University for the award of a Visiting Fellowship which made his visit

to Fort Collins, Colorado possible. This research was also carried out

in part under the auspices of the US Department of Energy under contract

No. DE-AC02-76CH00016.

139

Table 3.1. Stream rate proportionality factor (a) .

2 l/2 l/4
4 l/4 7/8

Table 4.1. Breakdown by percentage of sections
of code.

I

64-bit ! 32-bit I

force

ioaate

I
43.49

I (

I
42.46 I

I
56.40 : 57.40

Table 4.2. Breakdown by percentage of the main operation
types.

operation type 64-bit

matrix multiplication 58.33 47.05

Gather 20.78 29.27

random number generator 0.95 1.83

exponentiation 7.43 11.72

action 5.93 4.70

acceptance 3.62 3.01

32-bit
I

Table 4.3. The upgrades times for a link (in vsecs).

number of hits '64-bit 32-bit

10 62.1 40.9

8 55.1 36.3

140

UP X

G
UX-C

x+;+;:

Uf;+$

x+;

v’,+;-t

x+;L-h,

Figure 1. "Forward" (upper half) and
"backward" (lower-half) plaquettes in the
P-V plane, where x 5 (x1,x2,x3,x41 is a

point in our four-dimensional lattice.
This is one out of three such planes which
can be formed in a four-dimensional space.

141

“S
LI

C
ES

”

O
N

D

IS
K

I
If

un
ct

io
n

1
IN

M

EM
O

R
Y

C
IR

C
U

LA
R

BU
FF

ER

Fi
gu

re

2.

Th
e

I/O

sc
he

m
e.

In

ou

r
im

pl
em

en
ta

tio
n

th
e

"in
"

an
d

"o
ut

"
bo

xe
s

oc
cu

py

th
e

sa
m

e
ph

ys
ic

al

m
em

or
y.

FLOW CHART
new iteration I

NEW TABLE
new time-slice

INITIATE PAGING
I “colors”/directions (8 1
I

“FORCE” MATRICES

METROPOLIS UPGRADING
Random Gather from Table
Matrix Multiply-“new”action
Weight Factor (exponential)
Acceptance Test:

Random-rbi t vector-update

1 RENORMALIZE 1
1 (every 5 iterations) 1

I I

Figure 3. Schematic description of the computational
process.

143

References

[l] K.G. Wilson, Phys. Rev. m, 2445 (1974).

[Z] J.-M. Drouffe and J.-B. Zuber, Phys. Reports (to be published).

[3] M. Creutz, L. Jacobs and C. Rebbi, Phys. Reports 95, ZOl(1983).

[4] D. Barkai and K.J.M. Moriarty, Comput. Phys. Commun. 25, 57(1982);
26, 477(1982); 27, 105(1982); D. Barkai, M. Creutz and K.J.M. Moriarty,
Emput. Phys. CorrPTlun. 30, 13(1983). -

[5] D. Barkai, K.J.M. Moriarty and C. Rebbi, (to be published).

[6] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller
and E. Teller, J. Chem. Phys. 21, 1087(1953).

[7] Forrest Brown, private communication.

144

